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ABSTRACT

The importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil
moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman
filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation
data is used to force the ‘‘true’’ model solution, and reanalysis data for the prior (or background) fields. The
difference between the two precipitation datasets is thought to be representative of errors that might be en-
countered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface
soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel
Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation
errors in the (volumetric) root zone moisture content are 0.015 m3 m23 for the 3D-EnKF, 0.019 m3 m23 for the
1D-EnKF, and 0.036 m3 m23 without assimilation. Clearly, taking horizontal error correlations into account
improves estimation accuracy. Soil moisture estimation errors in the 3D-EnKF are smallest for a correlation
scale of 28 in model parameter and forcing errors, which coincides with the horizontal scale of difference fields
between gauge-based and reanalysis precipitation. In this case the 3D-EnKF requires 1.6 times the computational
effort of the 1D-EnKF, but this factor depends on the experiment setup.

1. Introduction

In a data assimilation system large-scale estimation
of soil moisture relies on the merger of information from
land surface models, meteorological forcing data, and
satellite observations of land surface states. The key to
optimal soil moisture estimation is the accurate repre-
sentation of the error characteristics of each source of
information. In large-scale assimilation systems com-
putational considerations force us to assume that model,
forcing, and observation errors are normally distributed
and for the most part are characterized by their error
covariances. Once these error covariances have been
determined, data assimilation is a straightforward, albeit
computationally demanding, application of standard op-
timization methods.

There are important differences between data assim-
ilation in the atmosphere and at the land surface that
are rooted in the nature of atmospheric and land surface
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processes. Land surface models, as long as they do not
include boundary layer processes, are basically just wa-
ter- and energy-balance models, albeit highly complex
and nonlinear. Perhaps the most important inputs to land
surface models are meteorological forcing variables
from screen-level observations or reanalysis data. Un-
like atmospheric models, land surface models do not
exhibit chaotic error growth. Consequently, errors in
model parameters and time-dependent meteorological
forcing inputs are much more important in land data
assimilation than errors in initial conditions, which are
typically of most interest in atmospheric data assimi-
lation. Finally, land surface models typically describe
the land surface as a collection of independent units or
grid boxes. In the catchment land surface model of the
NASA Seasonal-to-Interannual Prediction Project
(NSIPP; Koster et al. 2000a), for example, the com-
putational unit is the hydrological catchment, and all
catchment-to-catchment fluxes such as groundwater or
river flow are neglected.

It is tempting to construct the large-scale assimilation
system as a collection of independent assimilation prob-
lems, one for each catchment or grid box. Such systems,
sometimes known as one-dimensional (1D) assimilation
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systems, are relatively easy to implement and compu-
tationally very affordable (Walker and Houser 2001;
Reichle et al. 2002b; Crow and Wood 2003; Margulis
et al. 2002). In these 1D assimilation systems, by con-
struction only error correlations between state variables
from the same computational unit are taken into account,
and potential error correlations between states from dif-
ferent catchments or grid boxes are neglected.

The modeling of the land surface as a collection of
independent catchments or grid boxes, however, does
not imply that background (i.e., model forecast) errors
of separate units are uncorrelated. Unmodeled fluxes
across catchment boundaries such as river or ground-
water flow are likely to generate error correlations in
the model’s predicted fields. Moreover, the approxi-
mation or neglect of true physical processes in the model
can lead to horizontal correlations in model errors. For
example, potential large-scale errors in model param-
eters such as vegetation inputs or soil hydraulic param-
eters may entail large-scale error features in model soil
moisture. Finally and most importantly, errors in me-
teorological forcing data can be expected to exhibit
large-scale correlations, leading to horizontal correla-
tions in the errors of model states. If horizontal error
correlations do in fact exist, taking them into account
may be useful—they may allow the spreading of in-
formation from observed to unobserved catchments.
The resulting impact on the accuracy of soil moisture
estimation might be substantial.

Three-dimensional (3D) soil moisture assimilation
methods (Reichle et al. 2001, 2002a) take into account
error correlations of states that belong to different com-
putational units. However, it has not yet been established
whether 3D methods do in fact yield more accurate soil
moisture estimates compared to 1D approaches. The an-
swer to this question has wide implications for the de-
sign of emerging land data assimilation systems—the
benefits of 3D methods must be traded off against their
higher complexity and computational cost. In this paper,
we assess the impact of horizontal error correlations in
background fields on soil moisture estimation accuracy
by comparing estimates from one- and three-dimen-
sional versions of the ensemble Kalman filter.

The ensemble Kalman filter (EnKF) is a sequential
data assimilation method that uses ensemble represen-
tations of the background (i.e., model forecast) error
covariance (Evensen 1994). Many variants of the EnKF
have been described in the literature. Among these are
methods that use pairs of ensembles (Houtekamer and
Mitchell 1998), hybrid approaches that combine ensem-
bles with reduced-rank techniques (Heemink et al. 2001)
or with variational methods (Hamill and Snyder 2000),
particle filters (Pham 2001), and filters that avoid using
random samples of observation error (Tippett et al.
2003). Because of its flexibility and robustness, the
EnKF compares favorably to the extended Kalman filter
and is particularly well suited to large-scale soil mois-
ture estimation (Reichle et al. 2002b). In particular, the

EnKF requires no model adjoint or derivatives, can han-
dle a wide range of model and forcing errors, and has
been shown to yield accurate soil moisture estimates
with few ensemble members. Moreover, a three-dimen-
sional EnKF (3D-EnKF) for soil moisture estimation
(Reichle et al. 2002a) was found to perform well against
a variational assimilation method even though covari-
ance localization techniques (see section 2b) were not
used. Covariance localization methods have since been
found to improve estimation accuracy, particularly for
small ensemble sizes.

Here, to examine the importance of horizontal error
correlations, we make use of the common ‘‘twin ex-
periment’’ approach. That is, synthetic (model-gener-
ated) values of soil moisture are used to represent reality,
which can then be considered perfectly known. ‘‘Sat-
ellite retrievals’’ of this reality are assimilated into a
degraded version of the same modeling system. This
degraded version of the system represents model errors
by assigning different values to certain key model pa-
rameters and by using different precipitation forcing.
Note that synthetic data are essential for this analysis.
At this time we cannot perform the same study with in
situ or satellite data, given that soil moisture observa-
tions of sufficient density and quality are simply not
available across the spatial scales we consider—we
would have no way of determining what ‘‘reality’’ is,
so we would have no way of quantifying any improve-
ment in performance associated with the consideration
of horizontal error correlations.

The twin experiment presented here has important
implications for the design of emerging land assimila-
tion systems. It serves to isolate and quantify, for the
first time ever, the information added to a land data
assimilation system by the consideration of horizontal
error correlations. Presumably a similar improvement
would be felt when satellite soil moisture data are as-
similated. The existence of surface soil moisture data
retrieved from the C-band Scanning Multifrequency Mi-
crowave Radiometer (SMMR) instrument for the period
1979–87 (Owe et al. 2001), the imminent availability
of similar soil moisture data from the Advanced Mi-
crowave Scanning Radiometer for the Earth Observing
System (AMSR-E) instrument, and the eventual avail-
ability of passive L-band sensor data make the consid-
eration and evaluation of such distributed data assimi-
lation approaches a timely problem.

2. The ensemble Kalman filter

The standard Kalman filter is the optimal sequential
data assimilation method for linear dynamics and mea-
surement processes with Gaussian error statistics. The
ensemble Kalman filter is a Monte Carlo approach to
the nonlinear filtering problem (Evensen 1994) and is
based on the approximation of the conditional proba-
bility densities of interest by a finite number of randomly
generated model trajectories. In this section we provide
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FIG. 1. Schematic of the ensemble Kalman filter (EnKF).

a brief summary of the EnKF. A comprehensive dis-
cussion of the EnKF equations can be found in (Reichle
et al. 2002b).

We start by collecting the relevant model prognostic
variables from all catchments into the state vector x. Fig-
ure 1 depicts how the EnKF works sequentially from
measurement time k 2 1 to the next measurement time
k, applying in turn a forecast step and an update step.
During the forecast step the EnKF propagates an ensem-
ble of state vectors xi using a corresponding ensemble
of N random realizations of model error fields .iwk

i2 i1 ix 5 f (x ) 1 w i 5 1, 2, . . . , N. (1)k k k21 k

Here, the nonlinear operator fk( · ) includes all deter-
ministic forcing data (e.g., observed rainfall). The su-
perscripts 2 and 1 refer to states and covariances before
and after updates, respectively. Each state vector rep-
resents a particular realization of the possible model
trajectories with certain random errors in model param-
eters and/or a particular set of errors in forcing. Such
uncertainties are summarized in the model error term
wk, which is assumed to be a zero mean random variable
with covariance Qk. Since deterministic forcing data are
an integral part of the model, errors in the forcing are
sometimes also referred to as model errors.

With the observations yk available at time k, the state
of each ensemble member is updated to a new valuei2xk

:i1xk

i1 i2 i i2x 5 x 1 K (y 2 H x ) i 5 1, 2, . . . , N (2)k kk k k k

T T 212 2K 5 P H (H P H 1 R ) . (3)k k k k kk k

Simply put, the Kalman gain matrix Kk represents the
relative weights given to the model forecast and thei2xk

observations yk. The state (or background) error co-
variance is computed as the sample covariance of2P k

the ensemble ( , i 5 1, 2, . . . , N) prior to the update.i2xk

The operator Hk relates the states to the measured var-
iables in the measurement equation yk 5 Hkxk 1 vk,
where vk reflects measurement instrument errors and
errors of representativeness (assumed zero mean with
covariance Rk). Note that in the traditional EnKF update

the observations are perturbed by adding a random re-
alization of the measurement error such that 5 yk

i iv yk k

1 (Burgers et al. 1998). The reduction of the un-ivk

certainty resulting from the update is reflected in the
reduction of the ensemble spread (Fig. 1). The EnKF
state estimate at all times is simply the mean of the
ensemble members.

a. One- and three-dimensional EnKF

To illustrate the concept of horizontal error propa-
gation, let us assume that the domain contains only two
catchments, a and b, with one scalar state each, and that
r denotes the covariance of the state forecast errors in
the two catchments:

2x s ra a2x 5 P 5 . (4)kk 21 2 1 2x r sb b

Let us further assume that the state of catchment a is
observed directly, and that the state of catchment b is
not observed at all; that is, yk 5 ya and Hk 5 [1 0] with
Rk 5 . Dropping the ensemble index i and the time2sy

index k for clarity, the resulting update of the model
forecast by the observation ya is readily obtained from
(2) and (3):

1 2 2 2x 2 x (y 2 x ) sa a a a a5 . (5)
1 2 2 21 2 1 2x 2 x (s 1 s ) rb b a y

In this simple example, the state of the unobserved
catchment b is updated from an observation ya in catch-
ment a based on the error covariance r between the two
catchments. In other words, some of the information in
the observed catchment a is transferred into the unob-
served catchment b, provided the error correlation be-
tween the states in the two catchments is nonzero. The
importance of this transfer of information is the focus
of this paper.

Since catchments are modeled independently, the
forecast equation (1) implies that error correlations be-
tween states from different catchments (as reflected in

) exist only if generated by appropriate off-diagonal2P k

elements in the model error covariance Qk or because
such correlations were already present in the updated
ensemble at the previous time k 2 1 (as reflected in

). In the one-dimensional EnKF (or 1D-EnKF) all1Pk21

correlations between different catchments are neglected
in the model error covariance Qk, the measurement error
covariance Rk, and in the initial state error covariance

. Under these assumptions the state (or background)2P 0

error covariance matrix always maintains a block–2P k

diagonal structure, with each block corresponding to a
different catchment, and the update is computed inde-
pendently for each catchment. In other words, the 1D-
EnKF is applied to each catchment independently,
which offers great computational savings but neglects
potential horizontal propagation of error information.

If, however, horizontal correlations exist between
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model, forcing, or observation errors of different catch-
ments, these inevitably translate into nonzero off-di-
agonal elements of the state error covariance matrix

, and the update ought to be computed for all catch-2P k

ments simultaneously. For large domains such a global
update is not computationally feasible because of the
large size of the matrices involved. Fortunately, a global
update is also not necessary. A reasonable scale for
horizontal error correlations in continental or global soil
moisture fields is much smaller than the domain size.
In this case, covariance localization (or compact sup-
port) techniques in combination with a parallel imple-
mentation make it possible to take medium-range hor-
izontal error correlations into account within the prac-
tical constraints of limited computational resources.

b. Covariance localization

The modest ensemble size that can be afforded with
large-scale EnKF systems introduces spurious long-
range correlations in the forecast ensemble. This statis-
tical noise drowns out any actual weak correlations that
may arise at larger separation distances and makes their
accurate estimation impossible (Houtekamer and Mitch-
ell 2001; Hamill et al. 2001). It is therefore better to
suppress correlations beyond a certain separation dis-
tance by using a Hadamard (or Schur) product with a
local compactly supported correlation function. This
product is applied to the sample covariance terms

and Hk in (3). The compactly supported cor-2 2T TP H P Hk kk k

relation function is taken from [Gaspari and Cohn 1999,
their Eq. (4.10)]. A formal discussion of the modified
EnKF equations can be found in (Keppenne and Rie-
necker 2002). The covariance localization greatly im-
proves the conditioning of the key matrices in the update
equation (2).

c. Parallelization

Although the covariance localization imposes a band-
ed structure on the forecast state error covariance matrix,
the dimension of the global matrix that must be inverted
in the update equation (3) is unchanged and too large
to be affordable. An efficient implementation of the 3D-
EnKF must rely on parallelization. Since the land sur-
face model is inherently parallel, the EnKF forecast step
is trivially parallelized, and only the update step de-
serves a brief discussion. The basic idea is to decompose
the computational domain into smaller subdomains,
each of which is updated independently. Since the sam-
ple covariances are localized by applying the Hadamard
product (section 2b), only observations within compact
support distance from each subdomain can influence the
update of states in the subdomain. The global update is
thus replaced with a simultaneous update of the smaller
subregions that can be carried out in parallel. A formal
discussion of the parallelization can be found in (Hou-

tekamer and Mitchell 2001; Keppenne and Rienecker
2002).

3. Land model and experiment setup

a. Land surface model

For our twin experiment we use the NSIPP catchment
land surface model (Koster et al. 2000a; Ducharne et
al. 2000), which uses the hydrological catchment rather
than a rectangular grid cell as the computational unit.
Its viability has been demonstrated in a series of land
model intercomparison experiments (Bowling et al.
2003; Boone et al. 2004). Recall that catchments are
independent in the model (but coupled in the 3D-EnKF,
section 2a). In each catchment, three prognostic vari-
ables related to soil water allow the diagnostic calcu-
lation of horizontal soil moisture variability, which in
turn allows for conceptually improved treatments of
evaporation and runoff. The first prognostic variable,
the catchment deficit, determines the equilibrium soil
moisture profile and is defined as the amount of water
needed to bring the entire catchment to saturation. To
allow for nonequilibrium vertical distribution of water,
two additional variables (surface and root zone excess)
describe deviations from the equilibrium profile in the
surface and root zone layers.

From the prognostic catchment deficit, root zone ex-
cess, and surface excess, we can diagnose average soil
moisture content in the 2-cm surface layer, the 1-m root
zone layer, and the total soil profile (Walker and Houser
2001). We refer to these diagnostic variables as surface,
root zone, and profile soil moisture, respectively. In total
there are 22 prognostic variables per catchment (3 for
soil moisture, 1 for canopy interception, 9 for soil and
canopy temperatures, and 9 for snow). In our Kalman
filtering application, however, we use only the three
model prognostic variables that are directly related to
soil moisture as state variables for the assimilation
(catchment deficit, root zone excess, and surface ex-
cess). We assimilate synthetic observations of the (di-
agnostic) surface soil moisture.

b. Twin experiment

Our twin experiment is conducted over the Great
Plains region of the United States. The computational
domain is composed of all catchments that are fully
contained within 318–488N and 1108–908W. The 731
catchments in the domain have an average area of about
4000 km2, and thus the spatial resolution is approxi-
mately 0.58. The domain was chosen partly because
high-quality precipitation data are available there and
partly because soil moisture memory in the region may
be a source of seasonal predictability of summer rainfall
(Koster et al. 2000b; Koster and Suarez 2003).

The twin experiment starts with a model integration
that serves as the ‘‘true’’ solution and is meant to rep-
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FIG. 2. Mean total precipitation 1983–86 (mm day21): (left) gauge-based, (middle) reanalysis, and (right) difference
(reanalysis minus gauge-based).

resent nature. We start from a spinup initial condition
on 1 January 1983 and integrate the model until 31
December 1986 using standard model parameters and
high-quality precipitation data from Higgins et al.
(2000). These precipitation data are available daily from
1948 to 1998 on a 0.258 grid covering the continental
United States and are based on about 15 000 gauges on
a typical day. All other meteorological forcing data (in-
cluding, e.g., air temperature and humidity) are taken
from the 15-yr European Centre for Medium-Range
Weather Forecasting Reanalysis (ERA-15; Gibson et al.
1997) which is available from 1979 to 1993 with an
effective horizontal resolution of about 1.68. The spinup
initial condition was derived by repeatedly integrating
the model for 10 yr with 1979 forcing and subsequent
integration from 1 January 1980 to 1 January 1983.
Monthly leaf area index and greenness fraction vary
interannually and were derived from data collected by
the Advanced Very High Resolution Radiometers
(AVHRRs; Guillevic et al. 2002).

Additional integrations for the same period with er-
rors introduced in the model forcing and parameters are
then compared to the true integration. In one of these
integrations, the ‘‘prior’’ integration, surface soil mois-
ture is not assimilated. In further (‘‘assimilation’’) in-
tegrations, surface soil moisture is assimilated with ei-
ther the 1D- or 3D-EnKF. Forcing errors are imposed
by replacing the gauge-based precipitation with reanal-
ysis precipitation from ERA-15. Figure 2 illustrates the
two precipitation datasets and their difference. There is
a strong precipitation gradient from west to east across
the domain, with the highest precipitation recorded in
the southeast in both datasets. The mean reanalysis pre-
cipitation is higher than the gauge-based in the northern
half of the domain and less in the far southeastern corner.
Imposed parameter errors include the replacement of
the timescale parameters for moisture flow between the
surface excess, root zone excess, and catchment deficit.
Specifically, we use timescale parameters that were de-
rived for a 5-cm surface layer and a vertical decay factor
g 5 3.26 for the saturated hydraulic conductivity with

depth (rather than for the 2-cm layer and g 5 2.17 that
we use in the true integration). Finally, the monthly
climatology from 1982 to 1990 is used for the leaf area
index and greenness fraction instead of interannually
varying parameters. The initial condition for 1 January
1983 is generated by repeating the spinup procedure
described earlier with the changed forcing data and
model parameters. Collectively, these ‘‘wrong’’ forcing
and parameter inputs represent our imperfect knowledge
of the true land processes.

Synthetic observations of soil moisture content in the
2-cm surface layer (‘‘surface soil moisture’’) for the 1D
and 3D filters are derived from the true fields by adding
random measurement noise. The spatial and temporal
distribution of the synthetic observations must be cho-
sen with care, because the importance of horizontal error
correlations obviously depends on the spatial and tem-
poral distribution of the assimilated observations. The
biggest advantage of taking horizontal error correlations
into account is that information from observed catch-
ments may be spread to unobserved locations. If all
catchments of the domain were observed simultaneous-
ly, it is unlikely that horizontal error correlations would
have a strong impact. In practice, all catchments are not
observed simultaneously because a satellite scans the
globe in swaths and because the properties of some
catchments, notably dense vegetation, defy the retrieval
of soil moisture from satellite brightness temperatures.
To ensure the most realistic experiment conditions, our
synthetic observations follow the spatial and temporal
observation pattern of the Scanning Multichannel Mi-
crowave Radiometer on the Nimbus-7 satellite.

SMMR is a passive microwave radiometer with five
channels ranging from 6.6 GHz (C-band) to 37 GHz.
Overpasses of a given location are about once every 3
days on average. Soil moisture retrieval errors primarily
depend on the vegetation density at the time of the mea-
surement. In catchments with dense vegetation (vege-
tation optical depth greater than 0.65) soil moisture can-
not be accurately retrieved from C-band observations.
For lightly vegetated catchments, observation error stan-
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dard deviations range from 0.046 to 0.095 m3 m23 (De
Jeu 2003). We use these observation error standard de-
viations when adding synthetic noise to the synthetic
soil moisture observations and also in the EnKF algo-
rithm. Note that observation errors for C-band soil mois-
ture retrievals are very large relative to the dynamic
range of soil moisture, which is typically less than 0.35
m3 m23. For simplicity, we neglect potential horizontal
error correlations in the observations even though they
are probably present in satellite data. Our analysis fo-
cuses on horizontal correlations in model forcing and
parameter errors. Taking horizontal error correlations of
the satellite data into account would presumably further
improve the relative performance of the 3D-EnKF.

c. Filter calibration

The setup of the twin experiment implies that we do
not know the exact statistics of the model and forcing
errors. But filter performance depends strongly on our
choice of model error parameters, so we must choose
them very carefully. It is quite possible, for example,
that the 1D-EnKF can compensate for neglecting hor-
izontal error correlations through increased model error
standard deviations. To ensure a fair comparison of the
1D- and the 3D-EnKF, we find the parameters that allow
each filter to perform the best it can.

In data assimilation integrations, the ensemble spread
is generated and maintained by adding perturbations to
model fields and forcing inputs. Besides perturbing the
precipitation forcing of each ensemble member with a
lognormal distributed multiplicative error, we add syn-
thetic model error fields to the three state variables re-
lated to soil moisture (catchment deficit, root zone, and
surface excess). For the 1D-EnKF we generate spatially
uncorrelated errors directly in catchment space. The cor-
related error fields required for the 3D-EnKF are gen-
erated on a 0.58 grid with a fast Fourier transform al-
gorithm and subsequently interpolated to catchment
space. In all cases we assume that the standard deviation
of each type of model error is identical for all catch-
ments and use a normal probability distribution. Errors
for different variables are assumed uncorrelated. Finally,
the time series of error fields is modeled as an autore-
gressive process of order one with a correlation time of
1 day.

During the calibration of the model error variances
we set the e-folding scale of all horizontal error cor-
relations (including forcing perturbations) in the 3D-
EnKF to 28 in latitude/longitude coordinates. We also
impose a covariance localization scale of 58, that is all
error correlations beyond 58 separation distance are ne-
glected (section 2b). The 28 error correlation scale
matches the scale of the difference fields between gauge-
based and reanalysis precipitation (determined indepen-
dently). It is possible that simultaneous calibration of
error variances and horizontal scale might further im-
prove performance of the 3D-EnKF, but it is too com-

putationally expensive and therefore avoided. With all
inputs fixed except the magnitude of the model and
forcing error variances (for surface excess, root zone
excess, catchment deficit, and precipitation), we cali-
brate these remaining parameters to achieve the best
possible filter performance. Since the twin experiment
is designed such that the true solution is known, a con-
venient measure of estimation performance is the actual
error, which is the difference between the true soil mois-
ture and its EnKF estimate. As an aggregate measure
of filter performance we choose the average actual errors
in the root zone soil moisture, where the average is taken
in the root-mean-square sense over all catchments from
1 January 1983 to 31 December 1986. We choose errors
in root zone soil moisture because its memory may be
important for seasonal prediction.

For each filter, we computed the aggregate estimation
errors of about 100 integrations with different model
error variances. The results of a previous calibration
experiment of the 1D-EnKF (Reichle et al. 2002b) pro-
vided helpful guidance in the selection of trial model
error variances. For instance, the model error variance
in surface excess matters little because we also perturb
the precipitation inputs. The set of model and forcing
error variances that yields minimum root zone soil mois-
ture errors turns out to be the same for the 1D- and the
3D-EnKF. This implies that at least within our coarse
calibration the 1D-EnKF does not compensate for its
lack of horizontal error correlations by requiring dif-
ferent input error standard deviations than the 3D-EnKF.
The calibrated error standard deviations for both filters
are 0.72 mm day21 for the surface excess, 0.072 mm
day21 for the root zone excess, 0.72 mm day21 for the
catchment deficit, and 50% of magnitude for precipi-
tation errors. The resulting parameters are almost iden-
tical when we calibrate against the average of errors in
surface or profile moisture contents. Our calibration of
model error parameters serves mainly to make a fair
comparison of the 1D- and 3D-EnKF possible. There
are many adaptive methods to determine error statistics
during filter operation (Dee 1995).

4. Results and discussion

a. Soil moisture estimates

Figure 3 shows time-average estimation errors for
surface, root zone, and profile soil moisture without
assimilation (prior) and for the calibrated filters. Without
assimilation the largest errors are concentrated in the
eastern and northern part of the domain. This is con-
sistent with the geographical distribution of differences
between the gauge-based and reanalysis precipitation
(Fig. 2). In the southwestern part of the domain, dif-
ferences between gauge-based and reanalysis precipi-
tation are small and prior soil moisture already agrees
well with the truth even without assimilation. Where
prior estimation errors are high, both filters achieve a
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FIG. 3. Time-average error of the moisture content (m.c.) (left) prior to the assimilation, (middle) for the 1D-EnKF,
and (right) for the 3D-EnKF. Shown are errors for (top) surface, (middle) root zone, and (bottom) profile soil moisture
content. The average is from 1 Jan 1983 to 31 Dec 1986 in the root-mean-square (rms) sense. Units are volumetric
soil moisture (m3 m23).

significant reduction of errors. Overall the errors of the
3D-EnKF estimates show the smoothest and most ho-
mogeneous structure of all estimates. The most inter-
esting feature in Fig. 3 is the reduction of the large prior
errors in the eastern half of the domain and on the west-
ern boundary by the two filters. In these subregions the

1D-EnKF improves significantly on the prior estimates,
and the 3D-EnKF yields a further reduction of the errors.

The time- and domain-average estimation errors are
listed in Table 1. Average root zone soil moisture errors
in the 3D-EnKF decrease by 58% from their prior values
compared to a decrease of just 47% in the 1D-EnKF
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FIG. 4. (left) Average number of synthetic SMMR data of surface
soil moisture that were assimilated per month (1983–86). (right) Av-
erage leaf area index (LAI), 1983–86.

TABLE 1. Rmse of moisture content (m.c.), total evaporation, and
runoff for the prior (no assimilation) and the calibrated filters.

Prior 1D-EnKF 3D-EnKF

Surface m.c. (100 m3 m23)
Root zone m.c. (100 m3 m23)
Profile m.c. (100 m3 m23)
Evaporation (mm day21)
Runoff (mm day21)

4.0
3.6
4.0
1.2
3.0

3.0
1.9
2.2
1.1
2.8

2.9
1.5
1.7
1.0
2.8

FIG. 5. Time-average rmse of root zone soil moisture of each catchment for the 1D-EnKF vs same for the 3D-EnKF, broken down by avg
number of SMMR data available per month.

(from 0.036 to 0.015 m3 m23 in the 3D-EnKF and to
0.019 m3 m23 in the 1D-EnKF). Almost identical rel-
ative decreases can be seen for errors in the profile
moisture content. Similarly, domain-average evapora-
tion errors in the 3D-EnKF (1D-EnKF) decrease by 17%
(8%) from their prior values. In terms of the surface
soil moisture the 1D- and 3D-EnKF exhibit almost iden-
tical performance and show a clear improvement over
prior errors (from 0.040 to 0.029 m3 m23 in the 3D-
EnKF and to 0.030 m3 m23 in the 1D-EnKF). For runoff,
there is only a slight improvement in both filters, and
for most of the calibration experiments runoff estimates
from the EnKF are in fact worse than prior estimates.
This is to be expected because runoff is not a state
variable and is not updated in the filter. While the soil
moisture update obviously improves soil moisture, run-
off is a nonlinear function of precipitation, which is not
updated. In fact, the very nature of precipitation per-
turbations implies that more extreme rain events are
present in a few ensemble members, in particular for
strong (high variance) precipitation perturbations. This
typically leads to an overestimation of runoff in the filter

relative to the prior. In summary, runoff estimates from
the filter should be used with caution.

b. Data volume and filter performance

Data volume is critical to the performance of the filter,
and it is also critical to the difference in the perfor-
mances of the 1D- and the 3D-EnKF. The superior per-
formance of the 3D-EnKF can be understood by ana-
lyzing the average number of surface soil moisture ob-
servations that were assimilated per month. Figure 4
shows that the volume of SMMR soil moisture retrievals
is typically small where the leaf area index (LAI) is
large. The areas where the 3D-EnKF shows superior
performance are also areas of relatively low SMMR data
volume. In this context the superior performance of the
3D-EnKF can be explained by its ability to spread in-
formation from observed to unobserved catchments.
Note that because of details in the grid-to-catchment
interpolation, the data volume also depends weakly on
the size of the catchment. Fortunately, due to the syn-
thetic nature of the experiment, this does not affect our
results.

Figure 5 breaks down the error information by catch-
ments and bins according to SMMR data volume. The
scatterplots show time-average rmses of root zone soil
moisture for the 1D-EnKF versus the 3D-EnKF. When
there are fewer than five SMMR observations per month
available, errors are generally large and the 3D-EnKF
does significantly better than the 1D-EnKF. For catch-
ments with higher observation volume, errors become
smaller, and the difference in performance between the
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FIG. 6. Time- and domain-average rmse of root zone soil moisture
vs relative data volume. Data volume is varied by withholding data
randomly (circles/solid line) or by withholding data according to their
SMMR-retrieved vegetation optical depth. In the latter case, we use
either daytime data only (triangles pointing up), nighttime data only
(triangles pointing down), or both daytime and nighttime data (dia-
monds).

1D- and the 3D-EnKF gradually decreases. For catch-
ments with more than nine observations per month there
is no difference in performance between the 1D- and
3D-EnKF. These findings are consistent with results by
Hamill and Snyder (2000) showing that a hybrid 3D-
EnKF-variational atmospheric assimlation scheme is su-
perior to a simple variational method [three-dimensional
variational data assimilation (3DVAR)] primarily in
data-sparse regions.

The filter calibration (section 3c) was carried out with
a SMMR observation pattern that was subject to only
marginal quality control. When actual SMMR retrievals
are assimilated, additional quality control will be re-
quired, and the data volume will decrease relative to
our baseline experiments. When the volume of SMMR
data decreases, performance differences between the
1D- and 3D-EnKF will likely increase. To explore fur-
ther the impact of data volume on the relative perfor-
mance of the filters, we conducted a suite of supple-
mental experiments in which the number of assimilated
data were gradually reduced in two ways. In the first
strategy, (synthetic) data were withheld from the assim-
ilation in an entirely random pattern. In the second, data
were withheld mimicking a ‘‘quality control’’ strategy.

In the quality control strategy, data were withheld
according to their observation time and quality. Obser-
vation times for SMMR are local noon and midnight.
In one set of experiments, only daytime data were as-
similated, in another only nighttime data were used, and
in a third both daytime and nighttime data were assim-
ilated. Moreover, data were withheld according to the
retrievals of vegetation optical depth from the actual
SMMR observations (De Jeu 2003). We assimilated data
only if the retrieved optical depth was less than a spec-
ified value (namely, `, 0.55, 0.5, 0.45, or 0.4). This
strategy yielded a total of 15 experiments, covering all
combinations of the three time-of-day choices and the
five specified optical depth thresholds. Withholding data
in this way mimics the potential effects of reasonable
quality control measures. Nighttime soil moisture re-
trievals are typically more accurate than daytime re-
trievals because the temperature of the soil and canopy
system is more homogeneous at night and thereby more
easily retrieved from the 37-GHz channel. Similarly,
soil moisture retrievals in less-vegetated catchments are
more trustworthy. All experiments cover the entire do-
main from January 1983 to December 1986.

Figure 6 shows the time- and domain-average rmse
of root zone soil moisture plotted against relative data
volume. Relative data volume equal to zero corresponds
to the prior (no assimilation) integration, and relative
data volume equal to one corresponds to assimilating
all synthetic data that were used in the filter calibration.
As the volume of assimilated data increases, errors de-
crease. The decrease is steep for small data volumes and
flattens out as the data volume increases. For all possible
withholding strategies, the 3D-EnKF performs better
than the 1D-EnKF. The performance of the two filters

is by definition the same as the data volume approaches
zero (no assimilation). But even for very small but non-
zero data volumes the 3D-EnKF does significantly better
than the 1D-EnKF. There appears to be a maximum
performance advantage of the 3D-EnKF somewhere be-
tween no data and full SMMR data coverage. Its exact
location depends on the withholding strategy and is dif-
ficult to pin down because of statistical noise. Note that
the random withholding strategy places the maximum
very close to zero, while the quality control strategy
places it closer to 0.5. This is consistent with expec-
tations, since the random withholding strategy plays bet-
ter into the hands of the 3D-EnKF’s ability to spread
information from observed to unobserved locations.

c. Annual cycle and horizontal scales

Soil moisture estimation errors are not constant
throughout the year. To determine a crude climatology,
we repeated the twin experiment for the extended period
from 1 January 1979 to 31 August 1987 using the cal-
ibrated model and forcing error parameters. Figure 7
shows estimation errors in root zone soil moisture for
each month averaged over the extended experiment pe-
riod. The seasonality of the prior soil moisture errors
reflects the seasonality of precipitation and its errors.
Prior soil moisture errors are largest in spring and early
summer, precisely when a 3-month seasonal forecast of



1238 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y

FIG. 7. Annual cycle of domain-average rmse of root zone
soil moisture.

FIG. 8. Time- and domain-average rmse of root zone soil moisture
for varying inputs of horizontal error correlation scale to the 3D-
EnKF.

summer precipitation would be initialized. The season-
ality of 1D- and 3D-EnKF soil moisture errors reflects
again the seasonality of precipitation and its errors, but
is also affected by the seasonality of SMMR data avail-
ability. Filter estimation errors do not exhibit the sea-
sonal peak of the prior errors in late spring and early
summer. This is due to the increased availability of soil
moisture retrievals in spring, when soils are no longer
frozen and vegetation is not yet too dense. The filters
are thus able to maintain roughly constant performance
when the prior (no assimilation) errors increase signif-
icantly. Interestingly, the performance advantage for the
3D-EnKF is also largest in spring and early summer.

The filter calibration discussed in section 3c involved
only the calibration of model and forcing error standard
deviations while the horizontal error correlation scale
was fixed at 28. We carried out another series of 3D-
EnKF experiments imposing the calibrated error stan-
dard deviations but using a range of different e-folding
scales for the horizontal error correlations. In these ex-
periments the covariance localization scale was set to
2.5 times the error correlation (e-folding) scale. Each
experiment covered the entire domain from January
1983 to December 1986. Figure 8 shows 3D-EnKF es-
timation errors in root zone soil moisture as a function
of the horizontal error correlation scale. As the hori-
zontal scale increases from zero, soil moisture estima-
tion errors decrease and reach a minimum at about 28.
This optimal horizontal scale is consistent with the hor-
izontal scale of the difference fields between gauge-
based (true) and reanalysis (prior) precipitation data, as
determined independently. The fact that these scales
match corroborates the proper operation of the 3D-
EnKF.

The workings of the 3D-EnKF can be further illus-
trated by examining the marginal gain for a unit inno-
vation of a single observation. We define a unit inno-
vation as a difference of 0.1 m3 m23 between a hypo-

thetical surface soil moisture observation and the cor-
responding model forecast. When such a hypothetical
unit innovation is assimilated by itself, the resulting soil
moisture increments are called the marginal gain. If
many observations are assimilated simultaneously, the
marginal gain of one of the observations is precisely
the column of the Kalman gain matrix that corresponds
to this observation (up to a factor). The total increment
results as the sum of the columns of the Kalman gain
multiplied by the individual innovations [Eq. (2)].

Figure 9 shows the marginal gain for a unit innovation
in a single catchment in the northeastern corner of the
domain at 1800 UTC 20 June 1985 for the 3D-EnKF.
The marginal gain is strongest in and very near the
catchment where the observation is taken. Catchments
within a radius of a few degrees from the observed
catchment are also updated. Even for the observed
catchment, the size of the increment is small. For a unit
innovation of 0.1 m3 m23, the increment of the observed
catchment is only on the order of 0.01 m3 m23 for the
surface moisture content, and 0.001 m3 m23 for the root
zone moisture and profile moisture contents. The incre-
ments are small because the observation error of soil
moisture retrievals from C-band brightness data is large
relative to the dynamic range of soil moisture. To com-
pensate for such large observation errors the filter is
tuned (or calibrated) such that it produces only small
increments. The cumulative effect of many small in-
crements is what eventually gets the filter estimate close
to the truth.

The structure of the marginal gain in Fig. 9 appears
complex mainly for three reasons. First, soil moisture
error standard deviations vary strongly with soil mois-
ture content, and soil moisture fields are not typically
smooth. Second, the resolution of the irregular catch-
ments is coarse compared to the correlation scales.
Third, there is residual noise due to the small ensemble
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FIG. 9. Incremental update (or marginal gain) of the 3D-EnKF resulting from a 0.1 m3 m23 innovation 1800 UTC 20 Jun 1985
in a single catchment.

TABLE 2. Rmse of root zone moisture content (100 m3 m23) for
different ensemble sizes N.

N 4 8 16 32 64 128

1D-EnKF
3D-EnKF

2.00
1.69

1.92
1.56

1.88
1.49

1.88
1.46

1.87
1.44

1.87
1.43

size. In comparison, the structure of the 1D-EnKF mar-
ginal increments (not shown) is trivial because only the
observed catchment is updated and has a nonzero mar-
ginal gain. Due to residual noise, the distributed mar-
ginal gain of the 3D-EnKF may not be optimal and other
approaches, in particular a hybrid 3D-EnKF-variational
scheme (Hamill and Snyder 2000), may have added ben-
efits. It is nevertheless obvious from the results dis-
cussed earlier that the distributed update of the 3D-
EnKF is superior to the local nature of the 1D-EnKF
in our experiment.

d. Ensemble size and computational demand

A great deal of optimism is perhaps necessary when
the EnKF is used with just a few ensemble members in
problems having large state vector dimensions (order of
103 in our case, easily exceeding 105 in global appli-
cations). With the small ensemble size, only a very small
subspace of the error space is sampled, and any updates
are necessarily restricted to this subspace. Moreover, the
finite number of ensemble members in the EnKF results
in undesirable statistical (or sampling) noise in addition
to residual errors that are not due to the finite ensemble
size. Finally, ensemble size is intimately related to com-
putational demand. In this section we investigate the
impact of ensemble size on estimation errors and take
a closer look at the computational demands of both fil-
ters.

Table 2 shows the convergence of estimation errors
in root zone soil moisture when the ensemble size is

increased from 4 to 128 members. When compared to
the differences between the 1D- and 3D-EnKF, the errors
across the range of ensemble sizes for each filter are
fairly close. Even the 3D-EnKF with just 4 ensemble
members is still more accurate than the 1D-EnKF with
128 ensemble members. In this sense our findings about
the relative performance of the 1D- and 3D-EnKF are
robust, and our results do not change when the ensemble
size is varied within the range of what may currently
be feasible in global applications.

We can extract more information from the data in
Table 2 by assuming that statistical errors are negligible
for our largest (128-member) ensemble. In other words,
we assume that residual errors (not due to finite ensem-
ble size) are approximately given by the estimation er-
rors from the 128-member ensemble. This assumption
allows us to isolate the statistical noise for smaller en-
semble sizes N by subtracting the mean-square error
(MSE) of the 128-member ensemble from the total MSE
for N members. Figure 10 shows these presumably sta-
tistical errors as a function of the ensemble size. From
theory we expect that the statistical MSE decreases in
proportion to the inverse of the ensemble size. A re-
gression analysis produces a slope of 21.2 for the 1D-
EnKF and 21.1 for the 3D-EnKF. The 95% confidence
intervals for the slope [(21.5, 21.0) for the 1D-EnKF
and (21.2 21.0) for the 3D-EnKF] include 21, which
is consistent with our assumption that the statistical error
is negligible for 128 ensemble members.

Using our rough estimate of the residual error from
the 128-member ensemble, we can now see from Fig.
10 that for the 1D-EnKF with 12 ensemble members
the statistical MSEs are more than one order of mag-
nitude less than residual errors. This result is not sur-
prising because in each independent catchment we only
have three state variables and a correspondingly small
number of effective degrees of freedom. The result is
also consistent with a previous result that the 1D-EnKF
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FIG. 10. Statistical and residual part of the time- and domain-
average mean-square error (MSE) of root zone soil moisture. Residual
MSEs are approximated by errors from the 128-member ensemble.

with four ensemble members performs similar to an
extended Kalman filter (Reichle et al. 2002b). As ex-
pected, the statistical errors of the 3D-EnKF constitute
a larger fraction of the total errors than in the 1D-EnKF.
Nevertheless, total errors are always smaller in the 3D-
EnKF and we can tolerate a larger share of statistical
noise. In summary, very modest ensemble sizes on the
order of 10 are acceptable for both filters.

There is of course a price to pay for the improved
estimation accuracy of the 3D-EnKF. The additional cost
of the 3D-EnKF depends strongly on the total volume
of assimilated data, their distribution in time and space,
the ensemble size, and the relative length scales of error
correlations, resolution, and domain size. For our ex-
periment, the 3D-EnKF requires about 1.6 times more
CPU time than the 1D-EnKF primarily because of the
additional expense of generating correlated error fields.
In turn, the 1D-EnKF (with 12 ensemble members) re-
quires about 12 times more CPU time than a straight
model simulation without assimilation (prior). Relative
to the prior, the computational cost is therefore 12 for
the 1D-EnKF and 20 for the 3D-EnKF. This compares
to a reduction of root zone soil moisture errors by 0.017
m3 m23 or 47% (0.021 m3 m23 or 58%) for the 1D-
EnKF (3D-EnKF) over the prior. The relative gain of
using the 1D-EnKF over the prior is therefore larger
than the relative gain of using the 3D-EnKF over the
1D-EnKF. Nevertheless, the additional computational
expense of the 3D-EnKF may be justified depending on
its specific application and appropriate measures of per-
formance.

5. Summary and conclusions

We have investigated the importance of horizontal
error correlations in background (i.e., model forecast)
fields on soil moisture estimation by comparing the per-
formance of one- and three-dimensional versions of the
EnKF in a twin experiment. The main source of back-
ground error in our twin experiment was a difference
in precipitation forcing, with the ‘‘true’’ model solution
using gauge-based precipitation, and the prior and as-
similation experiments using reanalysis precipitation.
Assimilated synthetic surface soil moisture retrievals
follow the spatiotemporal pattern of SMMR.

Both the 1D- and the 3D-EnKF produce satisfactory
estimates of soil moisture that improve over the prior
(no assimilation) estimates. Our findings also indicate
that the 3D-EnKF produces more accurate soil moisture
estimates than the 1D-EnKF. The most critical factor in
determining the relative performance of the 1D- and
3D-EnKF is the data volume available for assimilation.
The performance advantage of the 3D-EnKF is rooted
in its ability to propagate observation information from
observed to unobserved locations. In the least-observed
catchments, soil moisture estimation errors are largest
in both filters, and the 3D-EnKF has its strongest per-
formance advantage. In the well-measured catchments,
soil moisture estimation errors are generally small, and
there is no difference in performance between the 1D-
and the 3D-EnKF.

Further experiments in which the overall volume of
assimilated data was reduced show that when very few
data are available, the difference between the 1D- and
3D-EnKF is small because the impact of the few data
on the estimates is small (relative to no assimilation).
When the data volume is large, the performance of the
1D- and 3D-EnKF is again closer, but the 3D-EnKF still
outperforms the 1D-EnKF. For intermediate data vol-
umes, the performance advantage of the 3D-EnKF is
most pronounced. While our analysis is based on the
historic SMMR instrument, current and future sensors
such as AMSR-E or L-band sensors will likely produce
greater data volumes through more frequent overpasses
or higher spatial resolution. This, however, does not
imply that the performance difference between the 1D-
and 3D-EnKF will vanish. The 3D-EnKF will presum-
ably remain valuable, for example, for soil moisture
estimation in densely vegetated areas, for which soil
moisture remote sensing remains highly uncertain or
even impossible, and the data volume remains low.

The seasonal distribution of prior (no assimilation)
soil moisture estimation errors exhibits a maximum in
late spring and early summer, precisely when accurate
soil moisture initial conditions are most needed for the
initialization of (seasonal) summer precipitation fore-
casts. Fortunately, both filters consistently produce im-
proved soil moisture estimates throughout the year. The
performance advantage of the 3D-EnKF over the 1D-
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EnKF, however, is greatest during the critical spring and
early summer period.

The performance difference between the 1D- and 3D-
EnKF is robust when the ensemble size is varied. The
3D-EnKF with just 4 ensemble members still produces
more accurate soil moisture estimates than the 1D-EnKF
with 128 ensemble members. The disadvantage of the
3D-EnKF is its increased complexity, which makes it
harder to implement and requires increased computa-
tional resources. In our experiment, the 3D-EnKF is
about 1.6 times more expensive than the 1D-EnKF for
the same number of ensemble members. The relative
cost of the two filters depends on the total number of
assimilated data, their distribution in time and space,
the ensemble size, and the relative length scales of hor-
izontal error correlations, domain size, and horizontal
resolution of the computational units.

A basic assumption of the research presented here is
that the difference in two precipitation datasets is rep-
resentative of actual errors in global precipitation ob-
servations. At least until far more accurate global pre-
cipitation data are available, we feel that our approach
is a reasonable starting point. In the future, other ave-
nues for the quantification of error statistics of precip-
itation and other inputs will have to be explored. From
an assimilation perspective, precipitation datasets would
ideally be available with such error statistics. In our
implementation an ensemble of precipitation fields is
generated simply by perturbing the prior (reanalysis)
precipitation with a multiplicative lognormal factor.
More sophisticated approaches could be designed
around rain/no-rain flags or by sampling precipitation
realizations from conditional climatological distribu-
tions (Crow 2003).

The 3D-EnKF can lead to an increase in soil moisture
estimation accuracy over that generated with the 1D-
EnKF. Whether or not the improvement in accuracy is
worth the additional computational expense depends on
the application at hand. For seasonal prediction the im-
portance of soil moisture initial conditions and accuracy
requirements are still a topic of active research. The
ultimate test will be whether or not more accurate soil
moisture initial conditions lead to more accurate sea-
sonal forecasts.
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